

A Raio-X característico Se um ou mais elétrons orbitais forem deslocados por algum processo de excitação, os elétrons se rearranjarão, liberando energia na forma de raio-X. Processos de excitação: Decaimento radioativo Radiação externa Conversão interna Captura eletrônica Captura eletrônica

Interação da Radiação com a Matéria

→A operação de qualquer tipo de detector é baseada no tipo da interação da radiação com a matéria.

	Radiação de partículas carregadas	Radiação não carregada	
	Alfa, pósitron, partículas pesadas e elétrons	Nêutron, raios X e gama	
	Perdem energia continuamente por interação do campo coulombiano	Sofrem interações localizadas, gerando partículas pesadas (p/ neutros) ou elétrons (p/ gama ou X)	
Para ser detectada, a partícula deverá depositar uma porção de sua energia (total ou parcialmente) no volume ativo do detector.			
INDIVIDUO DE MANDOPATOREA E DOSMETRIA CONTRACTOR DOSMETRIA			

Penetração da radi	ação na matéria em sólidos
The De Martin	
Radiação	Penetração*
partículas pesadas	~ 0.01mm
elétrons	~ 1mm
neutrons	~ 10cm
raios X e gama	~ 10cm
*ordem de grandeza	
Ť	RD INSTITUTO DE ADDORFOTERA E DOSINETRA

Fótons

1. absorção fotoelétrica

Interação do fóton com o átomo, ocorrendo a transferência total da energia e um elétron é ejetado, segundo a equação:

Corrente de ionização

Na presença de um campo elétrico, o trânsito de íons e elétrons constituem uma corrente elétrica.

Em um detector de pequeno volume submetido a uma irradiação constante, a taxa de formação de cargas estará balanceada pela taxa de perda (recombinação, difusão, etc.), a corrente produzida será uma representação acurada da taxa de formação de pares de íons. A medida desta corrente de ionização é o princípio básico de uma câmara de ionização.

Medida de exposição

Uma CI com ar é adequada para a medida de exposição.

Formação da avalancha			
 ✓ Baseado na multiplicação de pares de íons para amplificar a carga original criada no gás. ✓ Operado na forma pulso que são consideravelmente maiores que na CI. ✓ A multiplicação de pares é consequência do aumento do campo elétrico. 			
Campo elétrico baixo -> pequena velocidade (energia) de íons e			
Campo elétrico alto			
Elétrons com alta energia → provocam ionização secundária que, por sua vez, provocam ionização (formação da cascasta → Towsend avalancha)			

Quenching a. External quenching : redução de HV por um período após pulso. inviabilizando nova descarga (dispositivo cada eletrônico). b. Internal quenching : adicionar gás (5-10%) de estrutura molecular complexa de baixo potencial de ionização que, através de colisões com os íons formados, cederão elétrons. Ao atingir o catodo, a energia será liberada pela dissociação destas moléculas complexas. Ex. de gás de quenching : moléculas orgânicas e halogêneos. A grande vantagem dos halogêneos é que se recombinam, aumentando a vida útil do detector. CNEN IRD INSTITUTO DE RADIOPROTEÇÃO E DOSIMETRIA Ministério da

Eficiência de contagem

b. Fótons

A resposta à fótons ocorre devido a interação com a parede do tubo GM.

A eficiência depende de dois fatores:

1) da probabilidade da interação.

2) da probabilidade de um elétrons atingir o gás.

Material cintilador

Nenhum material apresenta todas estas qualidades, é necessário pesar os prós e contras.

Cintiladores inorgânicos \rightarrow Melhor emissão de luz e linearidade, mas lentos na responta. Devido ao alto Z e ρ , aplicados em espectroscopia gama.

Cintiladores orgânicos \rightarrow rápidos, mas emitem menos luz. Aplicados em espectroscopia beta e detecção de neutrons rápidos (devido à presença de hidrogênio).

Emissão de luz. Fluorescência → emissão imediata de luz. Fosforescência → maior comprimento de onda e mais lento. Fluorescência retardada → maior tempo de emissão após excitação.

Mecanismo de cintilação em cristais inorgânicos ativados

Absorvendo energia, um elétron pode pular da banda de valência para a de condução, retorna a banda de valência liberando energia na forma de fótons.

O que é um semicondutor?

Nos materiais cristalinos há 3 bandas de energia: valência, condução e proibida.

Banda de Valência → Camada mais externa onde os elétrons estão ligados à rede cristalina. Nesta banda os elétrons se localizam quando não estão excitados.

Banda de Condução → Banda em que os elétrons se encontram livres e migram pelo cristal.

Banda Proibida → Não é premitida a presença de elétrons.

IRD INSTITUTO DE RADIOPROTEÇÃO E DOSIMETRIA CNEN

Ministério da Ciência e Tecnologia

Semicondutor intrínseco

Semicondutores completamente puros apresentam o número de elétrons na banda de condução exatamente igual ao número de buracos na banda de valencia (devido apenas a excitação térmica).

Detector barreira de superfície

